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Global changes alter resource 
availability for plants
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Increased temperatures increases process rates
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Model system: Jasper Ridge 
Global Change Experiment

• Warming, elevated CO2, N-deposition, increased 
precipitation

• 16 treatments x 8 reps + 8 controls
• N=136  
• ANOVA
• Annual grassland
• 5 years of treatments



Jasper Ridge Global Change Experiment



Randomized block design

- Each block contains four plots with 
factorial combination of heat and 
elevated CO2

-each plot split for N-deposition and 
increased precipitation

-total of 128 quads
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Initial hypotheses:

Hypothesis 1 : Interacting global changes will increase 
resources required for plant growth,  thus increasing Net 
Primary Productivity

Hypothesis 2: Global changes will interact in an additive 
manner

NPP

N        N+Temp     N+Temp+ CO2  etc.



Surprise: Elevated CO2 suppressed the stimulatory effects that 
other  global changes had on NPP

T = increased temperature, N = nitrogen deposition, P = increased precipitation
in Shaw et al, 2002



Soil microbes interact with plants, 
possibly competing for limiting nutrients

Soil nutrients 
(N&P)

Water

Atmosphereic
carbon dioxide 
(CO2)

-Microbes are hetertrophic, rely 
organic carbon sources
-Plants exude carbon-rich 
compounds from their roots
-Increased exudation with elevated 
CO2
-No longer carbon limited, 
microbes may take up N & P, thus 
limiting plant growth

Soil water 
& nutrients

Organic carbon



Can microbes limit plant growth responses 
to elevated CO2 by immobilizing nutrients?

Soil Labile C Microbial C, N, P           Soil avail N, P Plant biomass

Ambient

Elevated CO2



JRGCE soil extracable C
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Elevated CO2 lowers 
soil labile C (p=0.07) 
and microbial 
biomass (p=0.09)

JRGCE Microbial biomass C
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JRGCE soil extractable N
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JRGCE Microbial biomass N
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N-deposition 
increases N-
availability, but 
elevated CO2 has no 
consistent effect 

Generally, there is 
more N in the 
microbial than the 
available pool

Elevated CO2
consistently lowers 
the microbial N pool 
(no significant 
results)



JRGCE soil extractable P

0

2

4

6

8

10

12

co
ntr

ol N

H20 T

N+H
20 N+T

T + 
H20

N+H
20

+T

u
g

 P
/g

 d
ry

 s
o

il ambient CO2
elevated CO2

Elevated CO2 consistently 
lowers soil available P, 
(p=0.19)

Microbial P is more 
variable than soil 
available P 

JRGCE microbial biomass P

0

2

4

6

8

10

12

co
ntr

ol N

H20 T

N+H
20 N+T

T + 
H20

N+H
20

+T

u
g

 P
/g

 d
ry

 s
o

il

N-deposition increases 
microbial uptake of P 
(p=0.10).  Increased 
precipitation and heat 
interact to lessen the 
effect of N-depostition



JR GC E Microbial b iomass C :P  ratio , average of April 
and March values
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JRGCE Microbial biomass C:N ratio, April
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Elevated CO2
consistently increases 
the C:N ratio of 
microbial biomass, 
less with multiple 
global changes

C:P ratios are high 
overall, but 
complicated



- N-deposition lowers foliar P concentrations, but no 
other global changes have significant effects

Avena phosphorous concentrations
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Data thanks to Duncan Menge 



Can microbes limit plant growth responses 
to elevated CO2 by immobilizing nutrients?
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Can microbes limit plant growth responses 
to elevated CO2 by immobilizing nutrients?

Ambient

Elevated CO2-We hypothesized:

Soil Labile C Microbial C, N, P          Soil avail N, P Plant biomass

- But we found:

Soil Labile C Microbial C, N,P           Soil avail N, P Plant biomass



Summary

• There is less P available under elevated CO2, but 
microbial immobilization may not be the cause…
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Summary

• There is less P available under elevated CO2, but 
microbial immobilization may not be the cause

• Litter immobilization of P may be the answer…
• What next?
• Decomposition experiment to address feedbacks



Plant community defined along a functional 
axis

↑ %N
↑ Quality for herbivores
↑ decomposition

↓ % N
↓ Quality for herbivores
↓ decomposition

Tissue quality, e.g. %N



Plant responses and feedbacks to global change

Global changes

Feedbacks to 
decomposition and nutrient 

availability

Physiological responses:

Shifting tissue chemistry



Plant responses and feedbacks to global change

Global changes

Feedbacks to 
decomposition and nutrient 

availability

Physiological responses:

Shifting tissue chemistry

Population responses:

Shifting species abundances



Decomposition experiment:

tissue 
chemistry

proportion 
of grasses & 
forbs

microclimate

Global changes

Decomposition rate:

mass loss, rate of N &P return to soil



Shifting 
species 
composition

Shifting 
tissue 
chemistry

=Decomposition microclimate+ +

Decompose 
material in a 
“common 
garden”,  to 
isolate the 
effects of 
shifting tissue 
chemistry

Decompose a 
“common 
substrate” in the 
plots, to isolate 
the abiotic
effects of 
globalchanges

Decompose 
material from 
each plot in 
place
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Foliar vs microbial biomass P concentrations

R2 = 0.0992
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